Research Algorithmic Group

100% partner-owned private investment management firm

г.Тюмень,ул. 50лет Октября 8Б
+7 (3452) 57-82-40
BVI | Russia

Задачи Data Mining. Классификация и кластеризация

Задача классификации

Классификация является наиболее простой и одновременно наиболее часто решаемой задачей Data Mining. Ввиду распространенности задач классификации необходимо четкое понимания сути этого понятия.

Приведем несколько определений.

Классификация - системное распределение изучаемых предметов, явлений, процессов по родам, видам, типам, по каким-либо существенным признакам для удобства их исследования; группировка исходных понятий и расположение их в определенном порядке, отражающем степень этого сходства.

Классификация - упорядоченное по некоторому принципу множество объектов, которые имеют сходные классификационные признаки (одно или несколько свойств), выбранных для определения сходства или различия между этими объектами.

Классификация требует соблюдения следующих правил:

  • в каждом акте деления необходимо применять только одно основание;
  • деление должно быть соразмерным, т.е. общий объем видовых понятий должен равняться объему делимого родового понятия;
  • члены деления должны взаимно исключать друг друга, их объемы не должны перекрещиваться;
  • деление должно быть последовательным.
Различают:

  • вспомогательную (искусственную) классификацию, которая производится по внешнему признаку и служит для придания множеству предметов (процессов, явлений) нужного порядка;
  • естественную классификацию, которая производится по существенным признакам, характеризующим внутреннюю общность предметов и явлений. Она является результатом и важным средством научного исследования, т.к. предполагает и закрепляет результаты изучения закономерностей классифицируемых объектов.
В зависимости от выбранных признаков, их сочетания и процедуры деления понятий классификация может быть:

  • простой - деление родового понятия только по признаку и только один раз до раскрытия всех видов. Примером такой классификации является дихотомия, при которой членами деления бывают только два понятия, каждое из которых является противоречащим другому (т.е. соблюдается принцип: "А и не А")
  • сложной - применяется для деления одного понятия по разным основаниям и синтеза таких простых делений в единое целое. Примером такой классификации является периодическая система химических элементов

Под классификацией будем понимать отнесение объектов (наблюдений, событий) к одному из заранее известных классов.

Классификация - это закономерность, позволяющая делать вывод относительно определения характеристик конкретной группы. Таким образом, для проведения классификации должны присутствовать признаки, характеризующие группу, к которой принадлежит то или иное событие или объект (обычно при этом на основании анализа уже классифицированных событий формулируются некие правила).

Классификация относится к стратегии обучения с учителем (supervised learning), которое также именуют контролируемым или управляемым обучением.

Задачей классификации часто называют предсказание категориальной зависимой переменной (т.е. зависимой переменной, являющейся категорией) на основе выборки непрерывных и/или категориальных переменных.

Например, можно предсказать, кто из клиентов фирмы является потенциальным покупателем определенного товара, а кто - нет, кто воспользуется услугой фирмы, а кто - нет, и т.д. Этот тип задач относится к задачам бинарной классификации, в них зависимая переменная может принимать только два значения (например, да или нет, 0 или 1).

Другой вариант классификации возникает, если зависимая переменная может принимать значения из некоторого множества предопределенных классов. Например, когда необходимо предсказать, какую марку автомобиля захочет купить клиент. В этих случаях рассматривается множество классов для зависимой переменной.

Классификация может быть одномерной (по одному признаку) и многомерной (по двум и более признакам).