Процесс классификации

 
Цель процесса классификации состоит в том, чтобы построить модель, которая использует прогнозирующие атрибуты в качестве входных параметров и получает значение зависимого атрибута. Процесс классификации заключается в разбиении множества объектов на классы по определенному критерию.

Классификатором называется некая сущность, определяющая, какому из предопределенных классов принадлежит объект по вектору признаков.

Для проведения классификации с помощью математических методов необходимо иметь формальное описание объекта, которым можно оперировать, используя математический аппарат классификации. Таким описанием в нашем случае выступает база данных. Каждый объект (запись базы данных) несет информацию о некотором свойстве объекта.

Набор исходных данных (или выборку данных) разбивают на два множества: обучающее и тестовое.

Обучающее множество (training set) - множество, которое включает данные, использующиеся для обучения (конструирования) модели.
Такое множество содержит входные и выходные (целевые) значения примеров. Выходные значения предназначены для обучения модели.
Тестовое (test set) множество также содержит входные и выходные значения примеров. Здесь выходные значения используются для проверки работоспособности модели.

Методы, применяемые для решения задач классификации

Для классификации используются различные методы. Основные из них:

  • классификация с помощью деревьев решений;
  • байесовская (наивная) классификация;
  • классификация при помощи искусственных нейронных сетей;
  • классификация методом опорных векторов;
  • статистические методы, в частности, линейная регрессия;
  • классификация при помощи метода ближайшего соседа;
  • классификация CBR-методом;
  • классификация при помощи генетических алгоритмов.
Собраться вместе есть начало. Держаться вместе есть прогресс. Работать вместе есть успех.

Основа сообщества была сформирована из активных участников обсуждений в твиттер аккаунтах в 2017-м году.

Главная цель сообщества — обмен мнениями и опытом посредством открытых дисскусий, статей, помощи в разработке торговых стратегий, исследований, и регулярных встреч.
100% partner-owned private investment management firm
Research Algorithmic Group
г.Тюмень,ул. 50лет Октября 8Б
+7 (3452) 57-82-40
BVI | Russia
----------------
post@ragve.ru