Погрешности в процессе Data Mining

Процесс Data Mining может быть успешным и неуспешным. Использование Data Mining не является гарантией получения исключительно достоверных знаний и принятия на основе этих знаний абсолютно верных решений.
Построенная модель может обладать рядом погрешностей. Вот некоторые из них: недостоверные исходные допущения при построении модели; ограниченные возможности при сборе необходимых данных; неуверенность и страхи пользователя системы, и, в силу этого, слабое их применение; неоправданно высокая стоимость.

Наиболее распространенной погрешностью модели являются неверные или недостоверные исходные допущения. Некоторые допущения поддаются объективной предварительной проверке, другие не могут быть заранее проверены. Если модель Data Mining основана на допущениях, естественно, ее точность зависит от точности допущений. Если допущения предыдущих периодов при использовании модели не оправдались, т.е. оказались неточны, то следует отказаться от "продления" этих допущений на будущие периоды.

Допустим ситуацию, когда модель хорошо работает в 18 из 20 филиалов компании. В двух филиалах, скорее всего, причина ошибок кроется не в погрешностях или неточностях модели, а в совсем других причинах, например, в данных. Если же модель плохо работает во всех филиалах без исключения, то, скорее всего, построенная модель некорректна.

Довольно сложно и установить время, которое необходимо для определения качества оценки модели. Этот отрезок времени обусловливается спецификой задачи и определяется индивидуально.

Выводы

Важным этапом в процессе Data Mining является предварительная подготовка данных, в том числе их очистка. От качества подготовленных данных будут зависеть результаты всего процесса.

В процессе построения и выбора модели Data Mining следует пробовать использовать различные методы и алгоритмы, а также их сочетания. При отсутствии опыта использования методов Data Mining лучше начинать с более простых, поддающихся интерпретации моделей. Далее можно постепенно усложнять модели, т.е. использовать более сложные методы. Не следует требовать от модели абсолютной точности, модель можно начинать использовать при получении первых приемлемых результатов.

Следует помнить, что процесс Data Mining является итеративным. При невозможности получения результатов, которые эксперт предметной области считает приемлемыми, необходимо вернуться на один из предыдущих этапов процесса.
Собраться вместе есть начало. Держаться вместе есть прогресс. Работать вместе есть успех.

Основа сообщества была сформирована из активных участников обсуждений в твиттер аккаунтах в 2017-м году.

Главная цель сообщества — обмен мнениями и опытом посредством открытых дисскусий, статей, помощи в разработке торговых стратегий, исследований, и регулярных встреч.
100% partner-owned private investment management firm
Research Algorithmic Group
г.Тюмень,ул. 50лет Октября 8Б
+7 (3452) 57-82-40
BVI | Russia
----------------
post@ragve.ru