Обучение сети Кохонена

Сеть Кохонена, в отличие от многослойной нейронной сети, очень проста; она представляет собой два слоя: входной и выходной. Ее также называют самоорганизующей картой. Элементы карты располагаются в некотором пространстве, как правило, двумерном.
Сеть Кохонена обучается методом последовательных приближений. В процессе обучения таких сетей на входы подаются данные, но сеть при этом подстраивается не под эталонное значение выхода, а под закономерности во входных данных. Начинается обучение с выбранного случайным образом выходного расположения центров.

В процессе последовательной подачи на вход сети обучающих примеров определяется наиболее схожий нейрон (тот, у которого скалярное произведение весов и поданного на вход вектора минимально). Этот нейрон объявляется победителем и является центром при подстройке весов у соседних нейронов. Такое правило обучения предполагает соревновательное" обучение с учетом расстояния нейронов от "нейрона-победителя".

Обучение при этом заключается не в минимизации ошибки, а в подстройке весов (внутренних параметров нейронной сети) для наибольшего совпадения с входными данными.

Основной итерационный алгоритм Кохонена последовательно проходит ряд эпох, на каждой из которых обрабатывается один пример из обучающей выборки. Входные сигналы последовательно предъявляются сети, при этом желаемые выходные сигналы не определяются. После предъявления достаточного числа входных векторов синаптические веса сети становятся способны определить кластеры. Веса организуются так, что топологически близкие узлы чувствительны к похожим входным сигналам.

В результате работы алгоритма центр кластера устанавливается в определенной позиции, удовлетворительным образом кластеризующей примеры, для которых данный нейрон является "победителем". В результате обучения сети необходимо определить меру соседства нейронов, т.е. окрестность нейрона-победителя.

Окрестность представляет собой несколько нейронов, которые окружают нейронпобедитель.

Сначала к окрестности принадлежит большое число нейронов, далее ее размер постепенно уменьшается. Сеть формирует топологическую структуру, в которой похожие примеры образуют группы примеров, близко находящиеся на топологической карте.

Полученную карту можно использовать как средство визуализации при анализе данных. В результате обучения карта Кохонена классифицирует входные примеры на кластеры(группы схожих примеров) и визуально отображает многомерные входные данные на плоскости нейронов.

Уникальность метода самоорганизующихся карт состоит в преобразовании n-мерного пространства в двухмерное. Применение двухмерных сеток связано с тем, что существует проблема отображения пространственных структур большей размерности.

Имея такое представление данных, можно визуально определить наличие или отсутствие взаимосвязи во входных данных.

Нейроны карты Кохонена располагают в виде двухмерной матрицы, раскрашивают эту матрицу в зависимости от анализируемых параметров нейронов.
Что же означает ее раскраска? На следующем рисунке приведена раскраска карты, а точнее, ее i-го признака (показателя pr_a), в трехмерном представлении. Как мы видим, темно-синие участки на карте соответствуют наименьшим значениям показателя, красные - самым высоким.
Теперь, возвращаясь к предыдущему рисунку, мы можем сказать, какие объекты имеют наибольшие значения рассматриваемого показателя (группа объектов, обозначенная красным цветом), а какие - наименьшие значения (группа объектов, обозначенная синим цветом).

Таким образом, карты Кохонена (как и географические карты) можно отображать:

  • в двухмерном виде, тогда карта раскрашивается в соответствии с уровнем выхода нейрона;
  • в трехмерном виде.

В результате работы алгоритма получаем такие карты:

  • карта входов нейронов;
  • карта выходов нейронов;
  • специальные карты.

Координаты каждой карты определяют положение одного нейрона. Так, координаты [15:30] определяют нейрон, который находится на пересечении 15-го столбца с 30-м рядом в матрице нейронов. Рассмотрим, что же представляют собой эти карты.

Карта входов нейронов.
Веса нейронов подстраиваются под значения входных переменных и отображают их внутреннюю структуру. Для каждого входа рисуется своя карта, раскрашенная в соответствии со значением конкретного веса нейрона.
При анализе данных используют несколько карт входов.

На одной из карт выделяют область определенного цвета - это означает, что соответствующие входные примеры имеют приблизительно одинаковое значение соответствующего входа. Цветовое распределение нейронов из этой области анализируется на других картах для определения схожих или отличительных характеристик. Пример рассмотренных карт входов будет приведен ниже.

Карта выходов нейронов.
На карту выходов нейронов проецируется взаимное расположение исследуемых входных данных. Нейроны с одинаковыми значениями выходов образуют кластеры - замкнутые области на карте, которые включают нейроны с одинаковыми значениями выходов.

Специальные карты. Это карта кластеров, матрица расстояний, матрица плотности попадания и другие карты, которые характеризуют кластеры, полученные в результате обучения сети Кохонена.

Важно понимать, что между всеми рассмотренными картами существует взаимосвязь - все они являются разными раскрасками одних и тех же нейронов. Каждый пример из обучающей выборки имеет одно и то же расположение на всех картах.
100% partner-owned private investment management firm
Research Algorithmic Group
г.Тюмень,ул. 50лет Октября 8Б
+7 (3452) 57-82-40
BVI | Russia
----------------
post@ragve.ru
Собраться вместе есть начало. Держаться вместе есть прогресс. Работать вместе есть успех.

Основа сообщества была сформирована из активных участников обсуждений в твиттер аккаунтах в 2017-м году.

Главная цель сообщества — обмен мнениями и опытом посредством открытых дисскусий, статей, помощи в разработке торговых стратегий, исследований, и регулярных встреч.